Rotational cryptanalysis of ARX

Dmitry Khovratovich, Ivica Nikolić

University of Luxembourg

Seoul, FSE'10 10 February 2010

∃ >

ARX

Addition-Rotation-XOR (and constants)

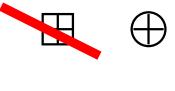
- Addition for nonlinearity;
- Rotation for intra-word diffusion;
- XOR for inter-word diffusion and linearity (!).

Using ARX:

- MD4-family (1990-92);
- SHA-0/1/2 (1994-2001).

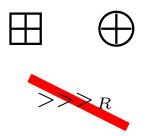
SHA-3 ARX candidates:

- BLAKE;
- Cubehash;
- Skein.



★ Ξ →

- What if we remove the addition?
 - The system is linear;
 - Easy to solve.


< ∃ →

э

What if we remove rotation?

- MSB do not influence LSB;
- One-direction diffusion;
- Easy to break gradually (see also preimage attack on SHA-1 by De Cannière and Rechberger).

What if we remove XOR?

- Formally XOR can be realized by {+, ≫} and constants.
- Though it is costly;
- Small systems are vulnerable.

∃ >

Cryptanalysis of AR

Idea:

- Approximate $\boxplus \pmod{2^n}$ with +;
- Approximate ≪ r with 2^r ⊙ (mod 2ⁿ − 1) (see also mod n cryptanalysis by Kelsey-Schneier-Wagner);

A B + A B +

A D

Cryptanalysis of AR

Idea:

- Approximate $\boxplus \pmod{2^n}$ with +;
- Approximate ≪≪_r with 2^r ⊙ (mod 2ⁿ − 1) (see also mod n cryptanalysis by Kelsey-Schneier-Wagner);
- All the computations are now modulo 2ⁿ − 1;
- This a linear approximation.

An AR-system with Q additions can be approximated with linear function with probability 2^{-Q} .

ARX without constants

ARX without constants?

•
$$F(0) = 0;$$

Symmetry patterns in symmetrical designs;

What else?

글 🖌 🖌 글 🕨

Cryptanalysis of ARX and related systems

Collisions:

- Additive differentials (Dobbertin, Wang);
- Solving systems of equations (Dobbertin for MD5, van Rompay et al. for HAVAL, Mendel et al. for Tiger, Nikolić-Biryukov for SHA-2);
- Linearization (Chabaud-Joux, Biham et al., Brier et al.);
- Auxiliary differential paths (tunnels, submarines, boomerangs, and many others).

Cryptanalysis of ARX and related systems

Preimages:

- Local collision techniques (Leurent, Sasaki-Aoki);
- Splice-and-cut for the meet-in-the-middle (Aumasson-Mendel-Meier, Sasaki-Aoki);
- Gradual state recovery (De Cannière-Rechberger for SHA-0/1, Aumasson et al. for DynamicSHA).

Rotational cryptanalysis

Dmitry Khovratovich, Ivica Nikolić Rotational cryptanalysis of ARX

A ►

A B + A B +

Steps towards

- Biham used rotated related keys in the attack on LOKI (1993).
- Dobbertin and Wang used additive differentials, which go through XORs and rotations.
- Kelsey, Schneier, and Wagner attacked rotation-addition (AR) systems with mod n cryptanalysis (1999).
- Daum studied the carry behaviour and probabilities of the rotation w.r.t. addition in the thesis (2005).
- Rotational cryptanalysis of SEA was considered by the designers (2006).
- Modified Serpent was attacked with rotational cryptanalysis (Dunkelman-Indesteege-Keller, 2008).

伺 ト く ヨ ト く ヨ ト

Rotational pairs

Dmitry Khovratovich, Ivica Nikolić Rotational cryptanalysis of ARX

æ

- ∢ ⊒ →

母▶ ∢ ≣▶

Definition

Consider a *rotational pair* of inputs (X, \vec{X}) :

$$\overrightarrow{X} = X \gg_r .$$

ARX:

[X]:
$$\overrightarrow{X \oplus Y} = \overrightarrow{X} \oplus \overrightarrow{Y}$$
;
[R]: $\overrightarrow{X} \gg_{r'} = \overrightarrow{X \gg_{r'}}$.

Preserved by XOR and rotation, and independent of rotation distance.

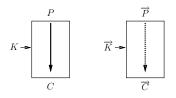
A B M A B M

Properties

[A]: Preserved by \boxplus with high probability:

$$\mathbb{P}_r\left[\overrightarrow{X\boxplus Y}=\overrightarrow{X}\boxplus\overrightarrow{Y}
ight]=rac{1}{4}(1+2^{r-n}+2^{-r}+2^{-n}).$$

For small *r* and large *n*:


r	\mathbb{P}_r	$\log_2(\mathbb{P}_r)$	
1	0.375	-1.415	
2	0.313	-1.676	
3	0.281	-1.831	
<i>n</i> /2	0.25	-2	

[C]: Changed by a constant addition:

$$\overrightarrow{X \oplus C} = \overrightarrow{X} \oplus C \oplus (C \oplus \overrightarrow{C})$$

伺 ト イ ヨ ト イ ヨ ト

Attack

- Rotate all inputs;
- Check whether the outputs are rotated.
- If there is no constants

$$\mathbb{P}\approx(p_r)^Q,$$

Q is the number of additions.

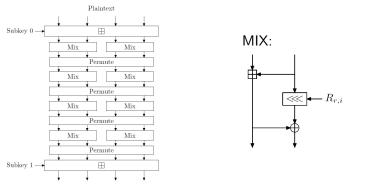
Advantages

Advantages:

- The structure is not important;
- Any set of rotation constants in the primitive is admissible (e.g. the recent Skein tweak does not help).
- Round probability does not grow.

Cryptanalysis: Threefish/Skein

Dmitry Khovratovich, Ivica Nikolić Rotational cryptanalysis of ARX


æ

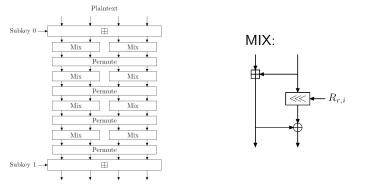
A ►

A B + A B +

Threefish Others

Threefish/Skein

- State and key of *N* 64-bit words;
- *N*/2 additions per round;
- Key addition every 4 rounds;


э

P

-

Threefish Others

Threefish/Skein

- 72–80 rounds in total;
- Symmetry and slide countermeasures:
 - Key addition constants (1–18);
 - One subkey is xored with $\lfloor 2^{64}/3 \rfloor$.

Threefish Others

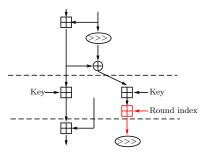
Attack model

We choose the strongest model:

- Attack the underlying block cipher (Threefish) for simplicity;
- The secret-key setting;
- 0*R*-attack.

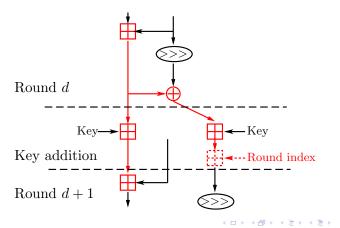
In other models more rounds can be broken.

Threefish


Cry

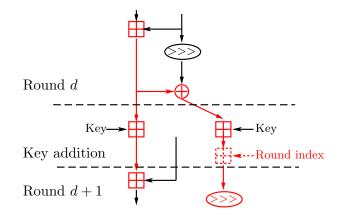
Simple attack

Simple attack


- Require all the variables to be rotated;
- Round constants introduce an error;
- Error is rotated immediately.

Does not work.

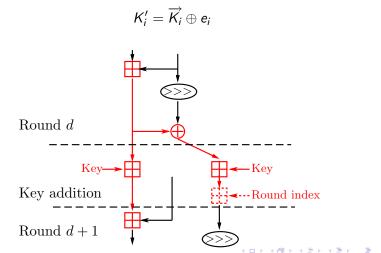
Attack


- Rotate by 2 bit to cancel $\lfloor 2^{64}/3 \rfloor$ (invariant);
- Small constants can be corrected:

Threefish Others

Attack

For large round indices it is impossible:



э

< 同 ▶

Rotational errors

Idea: introduce rotational errors in the key words:

Threefish

Threefish Others

Summary

Threefish-256 (72 rounds)				
24	Related-key differential	[Submission]		
39	Related-key rotational	-		
Threefish-512 (72 rounds)				
25	Related-key differential	[Submission]		
32	Related-key boomerang	[Aumasson et al.]		
33	Related-key boomerang	[Chen-Jia]		
42	Related-key rotational	-		
35	Known-related-key distinguisher	[Aumasson et al.]		
Threefish-1024 (80 rounds)				
26	Related-key differential	[Submission]		
43.5	Related-key rotational	-		

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Other applications

Dmitry Khovratovich, Ivica Nikolić Rotational cryptanalysis of ARX

æ

伺 ト イヨト イヨト

Threefish Others

Other applications

All the bitwise functions preserve the rotational pair (those MD5 and SHA-0/1);

・ 同 ト ・ ヨ ト ・ ヨ ト

Threefish Others

Other applications

- All the bitwise functions preserve the rotational pair (those MD5 and SHA-0/1);
- Rotation-invariant transformations (Keccak, RadioGatun) with probability 1, so no way to cancel a constant;

Threefish Others

Other applications

- All the bitwise functions preserve the rotational pair (those MD5 and SHA-0/1);
- Rotation-invariant transformations (Keccak, RadioGatun) with probability 1, so no way to cancel a constant;
- Rotational pair can form a boomerang quartet in the middle;

Threefish Others

Other applications

- All the bitwise functions preserve the rotational pair (those MD5 and SHA-0/1);
- Rotation-invariant transformations (Keccak, RadioGatun) with probability 1, so no way to cancel a constant;
- Rotational pair can form a boomerang quartet in the middle;
- S-boxes?